
Out-of-order	(OoO)	
Processing
Suvinay Subramanian

(adapted	from	prior	6.823	offerings,
ack:	Nathan	Beckmann)

Since	Last	Time…

1. Complex	Pipelines
• Superscalar	execution
• Out-of-order	(OoO)	processing

• Scoreboarding
• OoO:	Issue,	completion,	retiring
• Register	renaming

2. Branch	Prediction

In-Order	Pipeline

write
-back
phase

fetch
phase

execute
phase

decode & Reg-fetch
phase

memory
phase

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

IRPC

In-Order	Pipeline	Limitations

Observation:	True	data	dependency	stalls	dispatch	of	
younger	instructions	into	functional	(execution)	
units.

Let’s	take	a	step	back:	What	limits	
performance?

1. Von	Neumann	Model
• Sequential	stream	of	instructions

2. Implementation	Issues
• Multi-cycle	operations
• Variable	latency	operations

Computation	Structure

Every	algorithm	is	conceptually	a	number	of	tasks	
with	dependencies	between	them.

A

B C

FED

G H

Compilation

Compilation	serializes	this	graph	
in	some	way

A

B C

FED

G H

Compiler

A

B

C

F

D

E

H

G

“True”	data
dependencies

In-order	semantics—”false”	dependencies

Out-of-order	Processing

Essentially,	OOO	tries	to	dynamically
recover	the	true	computation	graph.

A

B C

FED

G H

OOO	processor

A

B

C

F

D

E

H

G

How	to	do	this	correctly?

1. Must	recognize	dependencies	
between	instructions

2. Must	cause	correct	sequencing	
of	the	dependent	instructions

3. Allow	independent	sequences	
of	instructions	to	proceed	
concurrently

Correctness

Performance

Dependencies

Data-dependence
r3 ← (r1) op (r2) Read-after-Write
r5 ← (r3) op (r4) (RAW) hazard

Anti-dependence
r3 ← (r1) op (r2) Write-after-Read
r1 ← (r4) op (r5) (WAR) hazard

Output-dependence
r3 ← (r1) op (r2) Write-after-Write
r3 ← (r6) op (r7) (WAW) hazard

OoO Issue	/	Dispatch

Stall	until	sure	that	issuing	will	cause	no	
dependences
• Is	the	required	functional	unit	available?
• Is	the	input	data	available?	
• Is	it	safe	to	write	the	destination

Dependencies	due	to	registers	can	be	determined	at	decode	stage.	
Data	hazards	due	to	memory	operands	can	be	determined	only	
after	computing	effective	address

OoO Implementation
OOO	implemented	via	a	re-order	buffer
(ROB):

• ROB	remembers	original	program	order	for	in-
order	commit.
• ROB	stores	computation	graph	by	its	edges—
the	dependencies.

Decode

A

B

C

F

D

E

H

G

Commit

ExecuteTask State Dependencies

A Committed

B Committed A

C Completed A

F Ready C

D Completed B

E Ready B,	C

H Waiting E,	F

A

B C

FED

G H

Not	ready
Ready
Complete
Committed

(Not	decoded)

Is	this	sufficient?

Number	of	registers	limits	maximum	number	of	
instructions	in	the	pipeline.

WAW,	WAR	hazards	are	false	dependencies	
introduced	by	limited	number	of	architectural	
registers

False	dependencies

A

B C

FED

G H

Compiler

A

B

C

F

D

E

H

G

“True”	data
dependencies

In-order	semantics—”false”	dependencies

1 1

2
2 3 3

4

4 R1

5 6

R1

R2

R3

5 R2

6 R3

4	now	overwrites	
1	since	both	 use	
R1,	so	we	can’t	
execute	F before	
B	even	though	
there	is	no	data	
dependency.

3.	Register	
conflicts	arise—
”false”	
dependencies

2.	Given	three	architectural	
registers:	R1,	R2,	R3

1.	Give	data	dependencies	names…

Register	renaming	helps	remove	
false	data	dependencies.

Register	Renaming

• Register	renaming eliminates	false	dependencies	by	
allocating	a	new	register	on	every	write.
• Requires	many	more	“physical	registers”	than	
architectural	registers	and	a	layer	of	indirection.

• Can	think	of	architectural	registers	as	“virtual	registers”	with	
the	renaming	table	acting	as	a	“register	page	table”.

• As	before,	the	idea	is	to	recover	the	computation’s
true	structure from	the	over	constrained compiled	
code.

Register	Renaming
A

B

C

F

D

E

H

G

“True”	data
dependencies

In-order	semantics—”false”	dependencies

1

1

2

3

2

3

Architectural Register Physical	Register

1

2

3 1 4

2 5

3 6

1
2

3

4
5

6

Hooray	we	
recovered	the	
original	register	
names!
è No	false	
dependencies!

OoO Implementation	w/	renaming

Decode

A

B

C

F

D

E

H

G

Commit

ExecuteA

B C

FED

G H

Not	ready
Ready
Complete
Committed

(Not	decoded)

Task State Inputs Output

A Committed P1

B Committed P1 P2

C Completed P1 P3

F Ready P3 P4

D Completed P2 P5

E Ready P2,P3 P6

H Waiting P4,P6

Express	dependencies	 in	
terms	of	the	physical	
registers that	pass	the	
data	between	instructions.

Architectural
Register

Physical	
Register

R1 P1 P4

R2 P2 P5

R3 P3 P6

OoO:	Summary

• OoO Processor:	Restricted	“data-flow”	machine
• Dynamically	builds	the	data-flow	graph

• The	dynamically	constructed	data-flow	graph	is	
limited	to	the	instruction	window

• Tolerates	long	latency	operations	by	executing	
independent	instructions	concurrently

Branch	Prediction

Control	Flow	Dependences.	How	to	handle	them?
• Stall:	Delay	until	we	know	the	next	PC
• Speculate:	Guess	next	value
• Do	something	else:	Multi-threading

Branch	Predictors

• 1-bit	predictor

• 2-bit	predictor

11

00

01

10

taken

¬taken

¬taken

taken

taken
¬taken

¬taken

taken

Branch	Predictors

Two	empirical	observations
1. A	branch’s	outcome	can	be	correlated	with	other	

branches’	outcomes
• Global	branch	correlation

2. A	branch’s	outcome	can	be	correlated	with	past	
outcomes	of	the	same	branch
• Local	branch	correlation

History-based	Prediction

Taken

Index

Concat

History

+/-

Prediction

Two-level	Predictor

Index

Concat

History

+/-

Prediction

Taken

f

PC

Tournament	Predictors

LHist

GHist

Chooser

Prediction

TAGE	Predictor

TAGE[L3]

Final
Prediction

TAGE[L2]TAGE[L1]BiModal

PC

Use
me?

My
Guess

• Entry	tagging:
Helps	avoid	aliasing	between	different	branch
scenarios

• Entry	selection:
Use	branch	address	+	history	 to	accurately	identify	
different	branch	scenario	for	same	branch

• Longer	branch	histories	as	required:
Use	long	histories	 for	branches	that	actually	benefit

